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SCALE-UP IN POROELASTIC SYSTEMS AND APPLICATIONS TO 
RESERVOIRS 

James G. Benyman * 
ABSTRACT 

A fundamental problem of heterogeneous systems is that the macroscale behavior is not necessarily 
well-described by equations familiar to us at the meso- or microscale. In relatively simple cases l i e  
electrical conduction and elasticity, it is hue that the equations describing macroscale behavior take the 
same form as those at the microscale. But in more complex systems, these simple results do not hold. 
Consider fluid flow in porous media where the microscale behavior is well-described by Navier-Stokes’ 
equations for liquid in the pores while the macroscale behavior instead obeys Darcy’s equation. Rig- 
orous methods for establishing the form of such equations for macroscale behavior include multiscale 
homogenization methods and also the volume averaging method. In addition, it has been shown that 
Biot’s equations of poroelasticity follow in a scale-up of the microscale equations of elasticity coupled 
to Navier-Stokes. Laboratory measurements have shown that Biot’s equations indeed hold for simple 
systems but heterogeneous systems can have quite different behavior. So the question arises whether 
there is yet another level of scale-up needed to arrive at equations valid for the reservoir scale? And if so, 
do these equations take the form of Biot’s equations or some other form? We will discuss these issues 
and show that the double-porosity equations play a special role in the scale-up to equations describing 
reservoir behavior, for fluid pumping, geomechanics, as well as seismic wave propagation. 
Keywords : poroelasticity, double porosity, effective medium theory, up-scaling 

INTRODUCTION 
Earth materials composing either aquifers or oil and gas reservoirs are generally hetero- 

geneous, porous, and often fractured or cracked. Distinguishing water, oil, and gas using 
seismic signatures is a key issue in seismic exploration and reservoir monitoring. Traditional 
approaches to seismic monitoring have often used Biot’s theory of poroelasticity (Biot 1941; 
Biot 1956a; Biot 1956b; Biot 1962; Gassmann 1951). Many of the predictions of this theory, 
including the existence of the slow compressional wave, have been confirmed by both labora- 
tory and field experiments (Plona 1980; Benyman 1980; Johnson et al. 1982; Chin et al. 1985; 
Winkler 1985; Pride and Morgan 1991; Thompson and Gist 1993; Pride 1994). 

Rather than trying to deal with all the heterogeneity at once, we choose to consider a model 
intended to capture two main features of importance. Just two types of porosity are often key at 
the reservoir scale: (1) Matrix porosity occupies a finite and substantial fraction of the volume 
of the reservoir. This porosity is often called the storage porosity since it stores the fluids of 
interest. (2) Fracture or crack porosity may occupy very little volume overall, but nevertheless 
has two very big effects on reservoir behavior. First the fractureskracks drastically weaken the 
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rock mechanically, so that a change in a very low effective stress level may introduce nonlinear 
geomechanical responses. The second effect is that fracturedcracks introduce a fast pathway 
for the fluid to escape from the reservoir. This effect is obviously key to reservoir analysis and 
the economics of fluid withdrawal. 

Many attempts have been made to incorporate fractures into rock models, and especially 
models that try to account for compressional wave attenuation in rocks containing fluids. But 
these models have often been viscoelastic rather poroelastic (Budiansky and O’Connelll976; 
O’Connell and Budiansky 1977). Benyman and Wang (1995) showed how to make a rigor- 
ous extension of Biot’s poroelasticity to include fractures/cracks by making a generalization to 
double-porosity/dual-permeability media modeling. That work concentrated on geomechan- 
ics and fluid flow aspects of the problem in order to deal with the interactions between fluid 
withdrawal and elastic closure of fractures during reservoir drawdown. The resulting equations 
were later applied to the reservoir consolidation problem by Lewallen and Wang (1998). Beny- 
man and Wang (2000) then showed how the double-porosity approach could be applied to wave 
propagation problems, thereby generalizing B iot’s work on waves to allow for heterogeneous 
porosities and permeabilities. 

The present paper addresses the question of scale-up in heterogeneous reservoirs. If Biot’s 
equations of poroelasticity are the correct equations at the mesoscale, then what are the correct 
equations at the macroscale? We show that Biot’s equations are not the correct equations at the 
macroscale when there is significant heterogeneity in fluid permeability. However, the double- 
porosity dual-permeability approach appears to permit consistent modeling of such reservoirs 
and also shows that no further up-scaling is required beyond the double-porosity stage. 

EQ UATlO NS 0 F BIOT’S SING LE-PO ROSlTY PO RO ELASTICITY 
For long-wavelength disturbances (A >> h, where h is a typical pore size) propagating 

through a single-porosity porous medium, we define average values of the (local) displacements 
in the solid and also in the saturating fluid. The average displacement vector for the solid frame 
is u, while that for the pore fluid is uf. The average displacement of the fluid relative to the 
frame is w = C$(u - uf). For small strains, the frame dilatation is e, while the increment of 
fluid content is defined by 

(1) 

With time dependence of the form exp(-iwt), the coupled wave equations that follow in 

C = -V.w = +(e- ef). 

the presence of dissipation are 

-w2(pu + pfw) = HVe - cvc + pd (v2u - ve) , 
-w2(pp + qw) = CVe - MVC = -Vpf, (2) 

where pd is the drained shear modulus, H, C, and M are bulk moduli, 

Q = Pf b/C$ + W 5 ) 7 7 / ~ 1 *  (4) 

The kinematic viscosity of the liquid is 77; the permeability of the porous frame is K ;  the dy- 
namic viscosity factor is given approximately [or see Johnson et al. (1987) for more discus- 
sion], for our choice of sign for the frequency dependence, by 

F(C) = +{CT(C)/P+ w 5 ) / a >  (5)  
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where 

and 

= (w/wo) i = (wcr/S/vd) 3 = (wh2/v) i . (7) 

The functions ber(c) and bei(6) are the real and imaginary parts of the Kelvin function. The 
dynamic parameter h is a characteristic length generally associated with and comparable in 
magnitude to the steady-flow hydraulic radius. The tortuosity Q 2 1 is a pure number related 
to the frame inertia which has been measured (Johnson et al. 1982) and has also been estimated 
theoretically (Berryman 1980; Berryman 1983). 

The coefficients H ,  C, and M are given by (Gassmann 1951; Geertsma 1957; Biot and 
Willis 1957; Geertsma and Smit 1961; Stolll974) 

(8) 
4 

H = Kd + s p d  + (1 - Kd/K,)2M, 

where 

M = 1/[(1- d - Kd/Km)/Km + d/Kf]. (10) 

The constants are drained bulk and shear moduli Kd and pd, mineral bulk modulus K,, and 
fluid bulk modulus K f .  Korringa (1981) showed equations @)-(lo) to be correct as long as 
the porous material may be considered homogeneous on the microscopic scale as well as the 
macroscopic scale. Also, see a recent tutorial on Gassmann’s equations (Gassmann 1951) by 
Berryman (1999). 

To decouple the wave equations (2) into Helmholtz equations for the three modes of prop- 
agation, we note that the displacements u and w can be decomposed as 

(1 1) u = VT + v x E, w = V$ + v  x 2, 
where T, $ are scalar potentials and $,2 are vector potentials. Substituting (11) into (2), we 
find (2) is satisfied if two pairs of equations are satisfied: 

(V2 + k z ) 8  = 0, 2 = -pf$/q (12) 

and 

(V2 + k$)A* = 0. (13) 

The wavenumbers in (12) and (13) are defined by 

and 
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with 

A = H M  - C2. (17) 

The linear combination of scalar potentials has been chosen to be 

where 

I?& = d/(k$ - b) = (ki - f ) / ~  (19) 

With the identification (19), the decoupling is complete. 

LOW FREQUENCY ASYMPTOTICS FOR SINGLE-POROSITY 
We wil l  first demonstrate the dichotomy of interest by showing what Biot’s theory predicts 

if it is applied to heterogeneous reservoirs. The main issues with up-scaling in poroelasticity 
occur for the low frequency asymptotics, and so we limit discussion to this regime here. For low 
frequencies, all the wavelengths are long, thereby covering large regions of the heterogeneous 
medium, and so up-scaling is an issue that must always be addressed in this limit. 

Compressional and Shear Waves 
Compressional and shear waves have almost the same asymptotic behavior at low frequen- 

cies, but the analysis for shear waves is much shorter, so we will present only the shear wave 
analysis here. 

The wavenumber IC, for shear wave propagation is determined by (14), and when w --f 0 
we have q + i p f q / t w ,  so 

Thus, when the loss tangent is a small number, we find the shear wave quality factor is 

Total attenuation along the path of a shear wave is then determined by the integral J &de 
along the path of the wave. We assume for the sake of argument that the fluid is the same 
throughout the reservoir. So all fluid factors as well as frequency are constant. The solid 
material parameters ,LLd and pm and also the porosity 4 (which is hidden in p) may vary in 
the reservoir, but these variations will be treated here as negligible compared the variations in 
the permeability K. Thus, we find that the total attenuation along a path of length L = Jd.4 
is approximately proportional to J 1cd.4. The average attenuation per unit length of the travel 
path is therefore proportional to J K&/L, which is just the mean of the permeability along the 
wave’s path. This result is also true for the compressional waves, but the other multiplicative 
factors are a bit more complicated in that case. 

4 



This type of dispersion relation corresponds to a purely diffusive process having a diffusion 
coefficient 2) II MK/qpf. This result follows directly from the second equation in (2) when 
the porous frame is sufficiently rigid. 

We reach the same conclusion about how fluctuating permeability affects the propagation 
or diffusion of increments of fluid content (i.e., masses of excess fluid particles) in both of these 
cases. For the wave propagation situation of (25), we clearly have, by simple analogy to the 

5 

Slow Waves 
In contrast, the slow compressional wave can have two very different types of behavior 

at low frequency depending on the magnitude of the permeability. The wavenumber k- for 
slow wave propagation is determined by (15). To simplify this equation, we note that it is an 
excellent approximation to take 

(22) 

So, at low frequencies, k? is proportional to q, whereas k: was inversely proportional to q. 
Then, for small frequencies but large values of the permeability, q -+ p f  [a/4 + i v /w] .  Sub- 
stituting this into (22), we find that 

W2 

A k? 2: b+ f = - [qH - 2pfC+ p M ]  . 

(23) 
W 2  

k? = [apfH/$ - 2pfC + pM + i q p f H / w ] .  

So as w ---f 0 for large K ,  there will be an intermediate frequency regime in which the slow 
wave has a welldefined quality factor 

which for strong frame materials reduces to 

Except for some factors of density, porosity, and tortuosity, this expression is essentially the 
inverse of the corresponding expression for l/Qs. Obviously both factors cannot be small 
simultaneously except for a very limited range of frequencies, which is determined by the 
factor a p / 4 p f .  Although the tortuosity a 2 1 in general it can have a wide range of values, 
for granular media it is typical to find a N 2 or 3. In addition, a is also scale invariant., Le., it 
does not depend on the size of the particles composing the granular medium. So, the presence 
of a multiplying K in (25) does not change the fact that the slow-wave attenuation is strongly 
influenced by fluctuations in the permeability K .  Being proportional to the square of the typical 
particle sizes, the permeability is itself not scale invariant. There is nevertheless a fairly small 
range of frequencies in which the approximation in (25) is valid, say from about 20 lcHz to a 
few MHz for K’S on the order of 1 D (2: m2). This is the range where a propagating slow 
wave might be expected to be seen, and in fact has been observed in laboratory experiments 
(Plona 1980). 

For still smaller permeabilities or smaller frquencies or both, the leading approximation 
for the slow wave dispersion is instead given by 



arguments given already, that the average attenuation per unit length along the wave’s path is 
proportional to J ~-‘de/L. Similarly, in the limit of the diffusion process described by (26), 
then for a planar excitation diffusing through such a system in a direction perpendicular to the 
bedding planes, or for regions of isotropic random fluctuations in permeability, we again expect 
the overall effective diffusion rate to depend on the same average quantity: J ~-‘de/L. Thus, 
measurements of slow waves or of fluid increment diffusion on the macroscale will measure 
an effective permeability that is largely controlled by the smallest permeability present in the 
system. Clearly, this is exactly the opposite dependence we found for the dependence of the 
shear wave and also for the fast compressional wave, and must cause difficulties for upscaling 
in Biot’s theory, where only one permeability parameter is available for the fitting of data. 
Discussion 

These observations show that there is a significant problem with up-scaling Biot’s theory, 
i. e., that the resulting system of equations is no longer of the same form as Biot’s theory. This 
is certainly no failing of Biot’s theory, but rather a failing of any attempted application of Biot’s 
theory directly to the upscaled macro-system. Biot’s theory predicts correctly that compres- 
sional and shear wave attenuation both depend on the integral of the permeability K along the 
path of each wave. But the permeability itself along the same path averages as the inverse of the 
permeability (harmonic mean). Thus, the overall permeability depends most strongly on the 
smallest permeabilities present in the system, while the wave attenuation depends most strongly 
on the largest permeabilities in the system (Benyman 1988). When we try to upscale under 
these circumstances, we have an inherent problem due to the fact that Biot’s theory contains 
only one permeability; yet, for heterogeneous systems, there are two very distinct measures of 
permeability (the mean and the harmonic mean) that play significant roles. 

SUMMARY OF DOUBLE-POROSITY WAVE PROPAGATION ANALYSIS 
Berryman and Wang (2000) provide a formulation as well as some specific examples of 

the predictions of a double-porosity dual-permeability model for wave propagation in hetero- 
geneous poroelastic media. The analysis is fairly tedious and we do not have space to present 
details here. The main conclusion of the double-porosity analysis is that the presence of the two 
porosities and permeabilities leads to new modes of propagation. In particular, bulk compres- 
sional and shear waves very similar to those in Biot’s single-porosity formulation are found, 
and now there are also two slow compressional waves. As the choices of parameters are varied, 
there are many types of interactions among these waves that are possible, but in the simplest 
cases the slow waves individually act like the ones described in the preceding section. 

Two Slow Waves 
We assume that the two permeabilities in the double-porosity model differ greatly in mag- 

nitude so that KI >> ~2 and that the corresponding porosities satisfy 0 < $1 << 4 2 .  Thus, 
the first porosity type is transport-like and the second is storage-like. The analysis of the pre- 
ceding section of the present paper would suggest that the smaller of the two permeabilities 
would result in a diffusive mode at all frequencies and the larger of the two would result in 
a propagating slow wave at high frequencies while then degenerating into another diffusive 
mode at low frequencies. This behavior is exactly what was found in the numerical examples 
presented by Benyman and Wang (2000). 

Shear and Compressional Waves 
Shear waves were not studied explicitly by Benyman and Wang (2000), but equation (5)  of 

that paper can be used for that purpose simply by applying the curl operator to all three of the 
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equations in the set. When this is done, the result is that the first equation describes the actual 
shear mode, while the other two equations provide constraints on the relative motion of the 
pore fluid in each type of porosity versus the displacement of the solid frame. In particular, the 
shear components of the differences in fluid and solid displacements can be uniquely related by 
complex factors (that are known explicitly) to the displacement of the solid alone. Furthermore, 
as in the case for single-porosity poroelasticity, all of the interesting behavior of the shear mode 
comes from the inertial terms. The form of the resulting dispersion relation at low frequencies 
is identical to (20) with the replacement 

K --+ K 1 +  6 2  N 61, (27) 

since we assume here that ~1 >> K ~ .  A similar result follows for the compressional wave. 
Thus, as for single-porosity, the attenuation of the shear and compressional waves is dominated 
by the largest permeability present in the system. However, this leads to no contradiction in 
the double-porosity formulation. Thus, the problem inherent in up-scaling with single-porosity 
poroelasticity is resolved in an intellectually satisfying way in the double-porosity approach. 

CONCLUSIONS 
It is well-known that fluid flow in porous media is welldescribed at the microscale by 

Navier-Stokes’ equations for fluids in the pores but at the macroscale the behavior instead 
obeys Darcy’s equation. Rigorous methods for establishing the form of such equations for 
macroscale behavior include multiscale homogenization methods and also the volume averag- 
ing method. In particular, it has been shown that Biot’s equations of single-porosity poroelas- 
ticity follow in a scale-up of the microscale equations of elasticity coupled to Navier-Stokes 
(Burridge and Keller 1981). 

We have found that the equations of single-porosity poroelasticity are not the correct equa- 
tions at the macroscale when there is significant heterogeneity in fluid permeability. However, 
the double-porosity dual-permeability approach appears to permit consistent modeling of such 
reservoirs and also shows that no further up-scaling is required beyond the double-porosity 
stage in many circumstances. 
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